1. Welcome to Game Dog Forum

    You are currently viewing our forum as a guest which gives you limited access to view most discussions and access our other features. By joining our free community, you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content and access many other special features. Registration is simple and absolutely free so please, join our community today!

    If you have any problems with the registration process or your account login, please contact us.

    Dismiss Notice

Why You Need Population Genetics: the 'Elevator Pitch'

Discussion in 'Breeder Discussion' started by Vicki, Apr 7, 2014.

Tags:
  1. Vicki

    Vicki Administrator Staff Member

    Why You Need Population Genetics:
    the "Elevator Pitch"
    by Carol Beuchat, PhD


    1) All the useful genetic variation your breed will ever have was in the dogs that founded the breed. This genetic diversity is finite.

    2) Each generation, alleles can be lost by chance (this is called "genetic drift") and also through artificial selection by breeders, who select for dogs with the traits they like and remove other dogs from the breeding population.

    3) Because the stud book is closed, genes that are lost cannot be replaced.

    4) So, from the moment a breed is founded and the stud book is closed, loss of genetic diversity over time is inevitable and relentless.

    5) You cannot remove just a single gene from a population. You must remove an entire dog and all the genes it has.

    6) You cannot select for or against a single gene, because genes tend to move in groups with other genes (this is called "linkage"). If you select for (or against) one, you select for (or against) them all.

    7) Breeding for homozygosity of some traits breeds for homozygosity of all traits. Homozygosity is the kiss of death to the immune system. And by the way, as genetic variability decreases, so does the ability of the breeder to improve a breed through selection, because selection requires variability.

    8) The consequences of inbreeding (in all animals) are insidious but obvious if you look - decreased fertility, difficulty whelping, smaller litters, higher puppy mortality, puppies that don't thrive, shorter lifespan, etc. Genetically healthy dogs should get pregnant if mated. They should have large litters of robust puppies, with low pup mortality. Animals that cannot produce viable offspring are removed by natural selection.

    9) Mutations of dominant genes are removed from the population if they reduce fitness. Mutations of recessive alleles have no effect unless they are homozygous. So rare alleles are not removed, they are inherited from one generation to the next, and every animal has them. Lots of 'em.

    10) If you create a bunch of puppies from your favorite sire, you are making dozens of copies of all of the bad alleles in that dog (which were never a problem before because they were recessive; see 9) and spewing them out into the population. Now, a (previously) rare mutation will become common, its frequency in the population increases, and the chances go up that some puppy will be produced that is homozygous (has two copies of that bad allele) - and homozygous recessive alleles are no longer silent.

    11) So, genetic disorders caused by recessive alleles don't "suddenly appear" in a breed. The defective gene was probably there all along. Make a zillion copies, and suddenly you have a disease.

    12) Using DNA testing to try to remove disease genes from the breed will not make dogs healthier (see 2, 5, and 6).

    13) The breed will continue to lose genes every generation (by chance or selection) until the gene pool no longer has the genes necessary to build a healthy dog.

    14) At this point, the breed might look wonderful (because of selection for type), but it will suffer from the ill effects of genetic impoverishment - inbreeding depression, diseases caused by recessive alleles, increased risk for cancer, etc.

    15) The health of individual dogs cannot be improved without improving the genetic health of the breed. The only way to improve the genetic health of the breed is to manage the health of the breed's gene pool.

    16) Population genetics provides tools for the genetic management of breeds or other groups of animals. Breeders CAN improve the health of the dogs they breed if they understand and use them.

    Copyright (c) 2013 Carol Beuchat
    This document may be reproduced without permission if accompanied by the copyright information.


    Last revision 11 Nov 2013.
     
  2. SteelyDan

    SteelyDan Big Dog

    Good read. I read a very recent study starting that alleles ate never actually lost but they are made dormant rather. Through selection of course. They can be brought back to the front and even made dominant once again through what some call "back breeding". The right cross is sometimes all that is needed when you've line out your program (filial degeneration) to the point you have lost something. In a perfect breeding with the right amount of dogs it takes much longer for this to happen and crosses aren't needed as much but most folks just don't keep that many different dogs.
     
  3. Tiznow

    Tiznow Big Dog

    Genetic diversity in purebred dogs has been a hot topic on canine genetics lists for some years now. Jeffrey Bragg got it started, it seems to me, with this ground-breaking article from the mid 90s. It's not an easy read, but one of the most interesting articles I've ever read on genetics and the whole (very artificial and problematical) man-made notion of "pure-bred".

    Purebred Dog Breeds into the Twenty-First Century: Achieving Genetic Health for Our Dogs
     

Share This Page